High-order rogue waves for the Hirota equation
نویسندگان
چکیده
منابع مشابه
Rogue waves and rational solutions of the Hirota equation.
The Hirota equation is a modified nonlinear Schrödinger equation (NLSE) that takes into account higher-order dispersion and time-delay corrections to the cubic nonlinearity. In describing wave propagation in the ocean and optical fibers, it can be viewed as an approximation which is more accurate than the NLSE. We have modified the Darboux transformation technique to show how to construct the h...
متن کاملRogue waves of the Hirota and the Maxwell-Bloch equations.
In this paper, we derive a Darboux transformation of the Hirota and the Maxwell-Bloch (H-MB) system which is governed by femtosecond pulse propagation through an erbium doped fiber and further generalize it to the matrix form of the n-fold Darboux transformation of this system. This n-fold Darboux transformation implies the determinant representation of nth solutions of (E([n]),p([n]),η([n])) g...
متن کاملDiscrete rogue waves of the Ablowitz-Ladik and Hirota equations.
We show that the Ablowitz-Ladik equation, which is an integrable form of the discretized nonlinear Schrödinger equation, has rogue wave solutions in the form of the rational solutions. We show that there is a hierarchy of rational solutions and we derive the two lowest-order ones using the Hirota technique. More generally, we present rational solutions for the discrete Hirota equation which inc...
متن کاملRogue periodic waves of the mKdV equation
Rogue periodic waves stand for rogue waves on the periodic background. Two families of traveling periodic waves of the modified Korteweg–de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and twofold Darboux transformations, we construct explicitly the rogue periodic waves of the mKdV equation. Since the dn-periodic wave i...
متن کاملRogue periodic waves of the modified KdV equation
Rogue periodic waves stand for rogue waves on the periodic background. Two families of traveling periodic waves of the modified Korteweg–de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and two-fold Darboux transformations of the travelling periodic waves, we construct new explicit solutions to the mKdV equation. Since t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Physics
سال: 2013
ISSN: 0003-4916
DOI: 10.1016/j.aop.2013.04.004